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Tannin content and composition are critical quality components of red wines. No spectroscopic method
assessing these phenols in wine has been described so far. We report here a new method using
Fourier transform mid-infrared (FT-MIR) spectroscopy and chemometric techniques for the quantitative
analysis of red wine tannins. Calibration models were developed using protein precipitation and
phloroglucinolysis as analytical reference methods. After spectra preprocessing, six different predictive
partial least-squares (PLS) models were evaluated, including the use of interval selection procedures
such as iPLS and CSMWPLS. PLS regression with full-range (650-4000 cm-1), second derivative
of the spectra and phloroglucinolysis as the reference method gave the most accurate determination
for tannin concentration (RMSEC ) 2.6%, RMSEP ) 9.4%, r ) 0.995). The prediction of the mean
degree of polymerization (mDP) of the tannins also gave a reasonable prediction (RMSEC ) 6.7%,
RMSEP ) 10.3%, r ) 0.958). These results represent the first step in the development of a
spectroscopic methodology for the quantification of several phenolic compounds that are critical for
wine quality.
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INTRODUCTION

Tannins are polymeric flavonoid compounds containing
subunits of flavan-3-ol. They have a critical role in the final
quality of red wines, mainly related with long-term color stability
(1) and astringency (2); additionally, they are active antioxidants
and probably provide important health benefits (3).

Several analytical methodologies have been developed to
measure tannins, such as colorimetric techniques (4), precipita-
tion with proteins (5), or acid-catalyzed cleavage in the presence
of a nucleophilic agent (6, 7). More recently, efforts have
focused in the development of rapid and simple chemical
techniques that could be easily implemented in a routine basis
in the lab. Examples of these new methodologies are tannin
precipitation with methyl cellulose (8), or with bovine serum
albumin (9), among others.

The use of spectrometric techniques, such as Fourier trans-
form mid-infrared (FT-MIR) spectroscopy combined with
multivariate data analysis (chemometrics) has demonstrated to
be a powerful analytical tool, that allows in a short time, to
quantify and predict the concentration of several specific
chemical compounds (10,11). This technique consists of
quantifying the absorption in the mid-infrared region of the
electromagnetic spectrum, usually ranging from 400 to 4000
cm-1, of molecules containing specific chemical bonds, such
as CdC, C-H, CdO, N-H, and O-H (12).

The potential of FT-IR for the rapid analysis of multiple wine
components has been extensively reported (13-15). More
specific applications of this spectroscopic technique to wine have
also been published, such as the measurement of tannin-protein
interactions (16), the classification according to wine origin (16,
17), the quantification and classification of polysaccharides (18),
or the monitoring of sugars, alcohol, and organic acids during
fermentation (19,20), among others.

Nevertheless, wine characterization by FT-MIR spectroscopy
and chemometrics presents two main limitations, i.e., similar
IR absorption bands of most interesting compounds, and
dominating absorption of major wine components, particularly
ethanol and water (13). Both limitations are critical for the
analysis of phenolic compounds, because ethanol, water, and
organic acids absorb in the same MIR region, masking the
characteristic IR vibrations of phenols (21). To overcome these
problems, chemometric techniques, such as partial least-squares
(PLS) regression, are commonly used as a pattern recognition
tool to develop mathematical models for the parameters of wine.
Moreover, the incorporation of automatic spectral selection
techniquesslike interval PLS (iPLS) (22) or changeable size
moving window PLS (CSMWPLS) (23)sto find out the most
relevant spectral features may improve the performance of the
models. In the specific case of wine phenolics, the interferences
of water and ethanol absorption must be removed before the
acquisition of the spectrum. For this purpose, either special
instrumental devices, such as attenuated total reflectance (ATR)
(24) or flow injection manifold (16), or additional sample
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processing, such as solid-phase extraction (25) and/or drying
(17, 26), can be used.

The aim of the present study was to investigate the suitability
of Fourier transform mid-infrared (FT-MIR) spectroscopy as
an accurate method for quantifying wine tannins, as part of a
more general effort for the development of a simple spectro-
scopic methodology that allows the robust analysis of those
phenolic compounds that are critical for wine quality. Several
models were developed using multivariate PLS regression and
spectral interval selection procedures (iPLS and CSMWPLS).
Two reference methods, protein precipitation and phlorogluci-
nolysis, were used to calibrate the models. The prediction of
the mean degree of polymerization (mDP) was also evaluated.

MATERIALS AND METHODS

Materials. All solvents were of high-performance liquid chroma-
tography (HPLC) grade. Acetonitrile, methanol and glacial acetic acid
were purchased from J. T. Baker (Phillipsburg, NJ). Phloroglucinol,
triethanolamine (TEA), ferric chloride hexahydrate, (+)-catechin (C),
bovine serum albumin (BSA, fraction V), and sodium dodecyl sulfate
(SDS) were purchased from Sigma (St. Louis, MO). Hydrochloric acid
and anhydrous sodium acetate were purchased from E. M. Science
(Gibbstown, NJ) and Mallinckrodt (Phillipsburg, NJ).

Samples.The sample set consisted of 86 red wines (vintages 2004
and 2005), ofVitis Vinifera L. cv. Carménère, which were produced
and kindly donated by different wineries situated in the central valleys
of Chile. The wines contained tannins derived exclusively from the
original grapes (no barrel or any other wood addition).

Sample Cleanup by Solid-Phase Extraction (SPE).In order to
avoid interferences in absorption bands by other compounds present
in high concentrationssethanol, organic acids, among others (21)s
the wines were previously purified by SPE. The C-18 SPE (1 g, CRS,
Louisville, KY) column was activated with 10 mL of methanol followed
by 10 mL of water. Four milliliters of wine was dealcoholized under
reduced pressure, at 35°C, and loaded onto the activated column. The
column was washed with 10 mL of water and the cartridge dried with
N2. The phenolic compounds were eluted with 4× 0.5 mL of methanol
to complete 2 mL total. The resulting methanolic extract was divided
in two: 0.5 mL for FT-MIR measurements and 1.5 mL for phloroglu-
cinolysis assay.

Reference Methods.Protein Precipitation Assay.Tannins were
analyzed by the modified protein precipitation assay from Harbertson
et al. (9). Wines (200µL) were diluted 2.5 times with a buffer of 12%
(v/v) ethanol containing 5 g/L potassium bitartrate adjusted to pH 3.3
with HCl (6 M). Bovine serum albumin (BSA, fraction V) (1 mg/mL)
was dissolved in a buffer containing 200 mM acetic acid and 170 mM
NaCl, and adjusted to pH 4.9 with NaOH (6M). The precipitation
reaction was carried out with 500µL of diluted wine and 1 mL of
BSA buffer. The mixture was incubated at room temperature for 15
min under agitation (100 rpm). Then the samples were centrifuged for
5 min at 13500g to separate the tannin-protein precipitate. The
supernatant was poured off, and the pellet was dissolved in a buffer
containing 5% (v/v) TEA and 5% (w/v) SDS and kept at room
temperature for 10 min. The tube was then vortexed until the tannin-
protein pellet was completely dissolved. Absorbance was read at 510
nm (background). After this reading, 125µL of ferric chloride (10 mM)
in 10 mM HCl was added, and after 10 min of incubation at room

temperature, the final absorbance at 510 nm was determined. The
amount of tannin-protein was calculated as the final absorbance minus
the background, and expressed as catechin equivalents (mg CE/L) after
comparison with a standard curve prepared with pure catechin (coef-
ficient of variation<5%).

Phloroglucinolysis.The phenolic extract (0.5 mL) was analyzed by
phloroglucinolysis followed by reversed-phase HPLC, as described in
(6, 27), using double strength (28). This method allows one to determine
both the tannin concentration, as the sum of the total released units,
flavan-3-ols, and adducts, and the average molecular weight (expressed
as mDP) of the tannin components. HPLC analyses were carried out
with a Merck-Hitachi L7100 (Darmstadt, Germany) consisting of a
vacuum degasser, an autosampler, a quaternary pump, a diode array
detector, and a column heater. A computer workstation with the D 7000
HSM software was used for chromatographic analysis. Tannin quan-
tification was determined by comparing the sum of known proantho-
cyanidin products with catechin as standard (coefficient of variation
<5%).

Infrared Spectroscopy Measurement.Acquisition of the infrared
spectra of the phenolic extracts was carried out in an Avatar 360 FT-
IR spectrometer (Thermo Nicolet Corporation, Madison, WI) equipped
with a DTGS KBr detector. The software OMNIC version 6.0a
from Thermo Nicolet was used for spectra acquisition. The data were
recorded in transmission mode, with 32 scan at 8 cm-1 resolution, from
650 to 4000 cm-1, at 26 ( 2 °C. The total number of data points
was 869 for each spectrum. The phenolic extract (50µL) was cast
onto a ZeSn crystal (0.785 mm2) and dried under reduced pressure till
total removal of the methanol. A reference scan of the ZeSn crystal
was taken every 10 min. The crystal was carefully cleaned with
ethanol and water between measurements. All samples were scanned
in triplicate. The whole procedure, including the SPE step (coefficient
of variation<3%) and the drying of the extract and spectrum acquisition
(coefficient of variation<2%), was highly reproducible.

Model Development.Linear models for tannin and mDP quantifica-
tion were developed by regressing spectral data with reference methods
using PLS algorithm. Spectral preprocessing and multivariate data
analysis were performed with TQ analyst (version 6.21, Thermo
Nicolet) software and Matlab 6.5 (Mathworks Inc., Natick, MA)
software.

Wine samples were divided into a calibration set (75% of the
samples) and an external validation set (25% of the samples).Table 1
summarizes the tannin concentration obtained by phloroglucinolysis
and BSA, as well as the mDP, for each data set. Assignment of samples
to either the calibration or validation set was based in the maxi-min
strategy and performed by TQ software. This strategy selects a specific
number of samples from a pool of candidates based in the spectral
information for those samples. The software performs a principal
components analysis to determine the sources of variation in the
samples. Then, it plots the distribution of the candidate samples from
the mean spectrum and uses the distance values to determine appropriate
samples for the model.

Model Preprocessing.Prior to calibration, the spectra triplicate were
averaged, the baseline was corrected, and the outliers were removed
by the TQ analyst software. Then, the data matrices were mean-centered,
smoothed with Savitsky and Golay filter (29) using a seventh order
polynomial, and the first derivative and second derivative of the spectra
were taken. Norris’s smoothing was also evaluated in the best models,
but it resulted in less accurate calibrations.

Table 1. Statistic Values of Calibration and Validation Sets of Tannins by Protein Precipitation Assay, Phloroglucinolysis, and Mean Degree of
Polymerization (mDP)

calibration set validation set

methodology Na range mean SDb Na range mean SDb

protein precipitation assay (mg/L) 63 85−900 397 189 21 89−804 404 186
phloroglucinolysis (mg/L) 62 117−514 312 81 20 153−455 300 89
mean degree of polymerization (mDP) 63 2.2−6.3 3.90 0.91 21 2.6−5.3 3.91 0.93

a N ) number of samples. b SD ) standard deviation.
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WaVelength Selection.Full, partial, and optimized local PLS models
were assessed. Local PLS models were coded in Matlab using two
interval selection procedures: interval partial least-squares (iPLS) (22)
and changeable size moving window partial least-squares (CSMWPLS)
(23). These procedures search for the most informative regions in the
spectra with important covarying spectral regions, to build models on
fewer variables (30).

In total, six models were built based in the following spectral
regions: Region one included the main range frequencies observed in
the FT-MIR spectrum of tannins (Table 2). Region two ranged from
650 to 4000 cm-1 wavelength (full-range). Region three ranged from
800 to 1800 cm-1 (fingerprint zone). Region four corresponded to a
zone suggested by the PLS software package of the TQ analyst, based
on the spectral information and the analysis of path length parameters.
Regions five and six were spectral regions suggested from the iPLS
and CSMWPLS procedures, respectively. The optimal spectral zones
for regions 4, 5, and 6 are specified inTables 3, 4, and5, respectively.

Model EValuation.PLS models with 1-10 factors were investigated.
The optimal number of PLS factors to use in the PLS models was
obtained by the cross-validation method with the leave-one-out option
(31), based on the minimum predicted residual sum of squares (PRESS)
and an optimum correlation coefficient (r) value, which should be as
high as possible. The predictive ability of the models was tested by
computing the root mean standard error of calibration (RMSEC) and
root mean standard error of prediction (RMSEP). The % RMSEP was
calculated as follows (32):

whereN ) number of samples,yi ) actual concentration,ŷi ) predicted
concentration, andyj ) average of actual concentration values. The %
RMSEC was calculated to replace in the equation the values of
calibration.

RESULTS AND DISCUSSION

Spectral Features. The full spectra of the dry extracts
presented main differences in the wavelength regions between
2800-3700 cm-1 and 800-1800 cm-1 of the electromagnetic
spectrum (Figure 1). Dried wine extracts are complex mixtures
of various phenolic compounds, and full assignment of the
spectral bands is challenging. In spite of this, the sharp
absorption bands and shoulders at different frequencies could
be attributed to the functional groups given inTable 2. The
prominent absorption band around 3400 cm-1 can be associated
with O-H stretching and C-H stretching vibrations (33). The
peaks between 800 cm-1 and 1800 cm-1 (Figure 2), the
fingerprint zone, could be attributed to CdC-C aromatic ring
stretching (1580-1615 cm-1; 1450-1510 cm-1) and several

aromatic C-H out-of-plane (670-900 cm-1) and in-plane
(950-1225 cm-1) bending vibrations, among others (26, 33).
In particular, the peak around 1285 cm-1 indicates a charac-
teristic feature for the flavonoid-based tannins (16). This peak
was assigned to the ethereal C-O stretching vibration arising
from the pyran-derived ring structure of this class of tannins
(34).

Data Preprocessing.An important decision when working
with FTIR data is to determine whether a preprocessing method
is necessary before the data analysis. Noise and bias are
undesirable features in the spectra and should be removed or
reduced. Bias can be removed by applying first or second
derivative, while noise can be attenuated with filtering or
smoothing algorithms (31). We therefore smoothed the data and
compared the raw transmission spectra with their first and
second derivatives. Several sharp absorption bands were ob-
served in the fingerprint region (800-1800 cm-1) of the derived
spectra, particularly for the second derivative one (Figure 1 vs
Figure 3).

Tannin Models. We calibrated the FT-MIR raw spectra, as
well as their corresponding first and second derivatives against
the chemical reference methods, using partial least-square (PLS)
regressions. The values of RMSEC, RMSEP,r, and their
respective percentages indicate the precision achieved in the
calibration and validation models. These values were more
accurate for the second derivative of the spectra than for the
other pretreatments of the data (first derivative and raw spectra).

Table 3 shows the statistical parameters for the models
calibrated with the protein precipitation assay. The six models
tested provided good calibration models (r > 0.9), although
neither of them presented an accurate prediction (% RMSEP>
10%). In particular, the main frequencies model had the highest
number of factors and its % RMSEC and % RMSEP were over
12%. The identification of the main spectrum features did not
help to correlate the spectral information with the tannin
concentration. The full-range model had the lowest number of
PLS factors and gave the most accurate values, i.e., RMSEC)
9.0%, andr ) 0.981.Figure 4 illustrates tannin concentration
determined by protein precipitation assay versus tannin con-
centration by FT-MIR for this model. The optimized local PLS
models tested (Fingerprint, TQ analyst, iPLS, CSMWPLS) did
not show superior calibrations, or better prediction capacity.

When phloroglucinolysis was used as the reference method,
even more accurate calibration models were obtained.Table 4
shows the statistical parameters obtained for the models. Here,
the PLS correlation based on the main frequencies at which
the chemical groups absorb gave a suitable calibration and
prediction of the tannin concentration (RMSEC) 7.7%,
RMSEP) 9.9%, andr ) 0.952). This model was the second
more accurate of the models tested. The best PLS model
(RMSEC ) 2.6%, RMSEP) 9.4% and r ) 0.995) was
achieved when the full-range was used.Figure 5 illustrates the
tannin concentration by phloroglucinolysis versus the tannin
concentration by FT-MIR for this model. Even though the
fingerprint, TQ Analyst, iPLS, and CSMWPLS models had
lower number of PLS, their statistics values were not good
enough to be considered accurate. In general, the model errors
observed were even lower than the calibration errors performed
with protein precipitation assay, which points to a better tannin
prediction with FT-MIR calibrated using phloroglucinolysis.

The differences observed between the models for tannin
quantification could be associated with variations in the nature
of the reference methods. Protein precipitation assay was applied
to the whole wine; this method determines only the phenols

Table 2. Functional Groups and Frequency Assignments for Tannins
from FT-MIR Spectra

vibrational
group

group frequency
wavenumber (cm-1) assignment

C−H 670−900 (several) aromatic C−H out-of-plane bend
C−H 950−1225 (several) aromatic C−H in-plane bend
C−O 1230−1320 C−O stretch from pyran-derived

ring structure
CdC−C 1450−1510; 1580−1615 aromatic ring stretch
combi 1660−2000 aromatic combination bands
C−H 3070−3130 aromatic C−H stretch
O−H 3200−3400; 3200−3570

(broad)
normal polymeric OH, stretch;

hydroxy group, H-bonded OH
stretch

RMSEP (%))
100

yj
(x∑

i)1

N

(yi - ŷi)
2

N
)
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that are bound to the protein and precipitate. On the other hand,
phloroglucinolysis was applied to the phenolic extracts and it
quantifies the flavan-3-ols and adducts released after acid
catalysis. Finally, the spectral acquisition was carried out from
the phenolic extracts. Thus, the lower accuracy of the model
calibrated with protein precipitation assay could be associated

with small differences between the compounds measured in the
wine and the compounds present in the spectrum (phenolic
extract). Moreover, the comparison of both main frequencies
models (Tables 3and4) could also evidence these differences.

Among all models tested, the superior performance presented
for the full-range model seems to contradict the relationship
between the spectral features and the tannin concentration found

Table 3. Summary of Calibration and Prediction Statisticsa for Tannin (mg/L) Determinationb

model region (cm-1)
PLS

factors RMSEC
(%)

RMSEC RMSEP
(%)

RMSEP r outliers

main frequencies 670−900; 950−1225; 1230−1320; 1450−1510;
1580−1615; 1660−2000

10 49.6 12.5 50.7 12.5 0.964 2

full-range 650−4000 8 35.8 9.0 53.7 13.2 0.981 2
Fingerprint 800−1800 9 47.9 12.1 51.9 12.8 0.966 2
TQ Analyst 791−2989 9 42.5 10.7 51.9 12.8 0.974 2
iPLS 953−1751 9 47.8 12.0 51.1 12.6 0.967 2
CSMWPLS 1026−1196; 1489−1751 8 46.8 11.8 64.6 15.9 0.968 2

a RMSEC, root mean standard error of calibration; RMSEP, root mean standard error of prediction; r, coefficient of correlation. b Calibration was carried out with protein
precipitation assay as reference method and using the second derivative of the spectra.

Table 4. Summary of Calibration and Prediction Statisticsa for Tannin (mg/L) Determinationb

model region (cm-1)
PLS

factors RMSEC
(%)

RMSEC RMSEP
(%)

RMSEP r outliers

main frequencies 670−900; 950−1225;1230−1320; 1450−1510;
1580−1615; 1660−2000

10 24.3 7.7 29.8 9.9 0.952 4

full-range 650−4000 9 7.97 2.6 29.9 9.4 0.995 4
Fingerprint 800−1800 6 32.9 10.5 34.6 11.5 0.911 3
TQ Analyst 791−1300 6 38.0 12.2 50.9 16.9 0.879 3
iPLS 1003−1250 4 31.3 10.0 34.4 11.5 0.902 3
CSMWPLS 1084−1207 5 34.8 11.1 36.3 12.1 0.890 3

a RMSEC, root mean standard error of calibration; RMSEP, root mean standard error of prediction; r, coefficient of correlation. b Calibration was carried out with
phloroglucinolysis as reference method and using the second derivative of the spectra.

Table 5. Summary of Calibration and Prediction Statisticsa for mDP Determinationb

model region (cm-1)
PLS

factors RMSEC
(%)

RMSEC RMSEP
(%)

RMSEP r outliers

main frequencies 670−900; 950−1225; 1230−1320; 1450−1510;
1580−1615; 1660−2000

10 0.351 9.0 0.632 16.1 0.922 2

full-range 650−4000 8 0.261 6.7 0.405 10.3 0.958 2
Fingerprint 800−1800 7 0.450 11.5 0.628 16.0 0.869 2
TQ Analyst 1084−2958 6 0.517 13.2 0.550 14.0 0.823 2
iPLS 1170−1500 6 0.506 12.9 0.649 16.6 0.831 2
CSMWPLS 1686−1732 7 0.412 10.6 0.543 13.9 0.861 2

a RMSEC, root mean standard error of calibration; RMSEP, root mean standard error of prediction; r, coefficient of correlation. b Calibration was carried out with
phloroglucinolysis as reference method and using the second derivative of the spectra.

Figure 1. FT-MIR spectra for seven phenolic extracts (650−4000 cm-1)
after baseline correction and normalization scale.

Figure 2. FT-MIR spectra for seven phenolic extracts, fingerprint zone
(800−1800 cm-1) after baseline correction and normalization scale.
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for the PLS model. We believe that the heterogeneous nature
of the sample matrix, given by the presence of polymeric
pigments in the phenolic extracts, which were not completely
observed with the main frequencies model, could have produced
better calibration results taking into consideration more of the
spectral information (full-range).

In addition, to obtain more accurate results, we developed
the models on a single red wine variety, given that more accurate
calibrations are usually obtained when the wines are segregated
by variety (20,21). Thus, to generalize the models to any red
wine, many more samples will be necessary.

It is worthwhile mentioning that the strong correlation existing
between tannin concentration and wine astringency (35) opens
the possibility of using the models developed here to predict
wine astringency.

Mean Degree of Polymerization (mDP).Valuable informa-
tion regarding the structure of proanthocyanidins is mDP, that
is, the average number of monomers per polymer chain
molecule. We estimated the mDP of the wine samples by
phloroglucinolysis, and using FT-MIR together with PLS
regression. The statistical parameters are presented inTable 5.
The results indicated that the correlation of mDP with main
frequencies of the spectra gave an accurate calibration (RMSEC
) 9.0% andr ) 0.922), although the number of PLS factors
was the higher and the RMSEP) 16.1% was not good enough.
The full-range model fitted best (r ) 0.958), showing the lowest
RMSEC ) 6.7% and RMSEP) 10.3%.Figure 6 shows the
correlation between the mDP determined by phloroglucinolysis
and the mDP by FT-MIR for the best calibration model.
Inspection of the scatter plots and statistics (Table 5) shows a
good fit of the model. The local PLS models (iPLS and
CMWPLS) resulted in even lower accuracy than the fingerprint
and than the zone suggested by the TQ software.

Even though PLS automatically gives high priority to
wavelengths that covary with the variables to calibrate, it is
argued that the predictive ability often increases when the region
is based only on the significant variable intervals (22,23). We
tried to prove this hypothesis using iPLS and CSMWPLS as
automatic variable selection methods. However, our calibration
and prediction models did not improve, although the number
of factors found was always the lowest obtained. This agrees
with the principles of variable reduction postulated in the
selection methods (30). It is possible that the chemical informa-
tion of the present study (the signal-to-noise ratio of tannin
information relative to the background) was good enough for
simpler models to adequately describe the variations. Therefore,
and as a general strategy, it might be better to stick to simpler
models to improve the chances of building more robust models,
which would be more useful over the extended experimental
time periods required in industrial applications.

Figure 3. Second derivative spectra of phenolic extracts.

Figure 4. Correlation plot of best calibration and validation for the
prediction of tannins (mg/L) using FT-MIR and protein precipitation assay.
(b) Calibration samples, (×|) external validation samples, and (s) line of
perfect correlation. Wavelength range from 650 cm-1 to 4000 cm-1;
second derivative, PLS calibration statistics RMSEC ) 9.0%, RMSEP )
13.2%, r ) 0.981.

Figure 5. Correlation plot of best calibration and validation for the
prediction of tannins (mg/L) using FT-MIR and phloroglucinolysis. (b)
Calibration samples, (×|) external validation samples, and (s) line of
perfect correlation. Wavelength range from 650 cm-1 to 4000 cm-1;
second derivative, PLS calibration statistics RMSEC ) 2.6%, RMSEP )
9.4%, r ) 0.995.

Figure 6. Correlation plot of best calibration and validation for the
prediction of mDP using FT-MIR. (b) Calibration samples, (×|) external
validation samples, and (s) line of perfect correlation. Wavelength range
from 650 cm-1 to 4000 cm-1; second derivative, PLS calibration statistics
RMSEC ) 6.7%, RMSEP ) 10.3%, r ) 0.958.
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As a whole, this work showed that FT-MIR spectrometry
combined with multivariate data analysis allows an accurate
determination of tannin concentration and mDP in wines. The
possibility of predicting these characteristics of wines is an
invaluable tool when a large number of tannin samples need to
be analyzed. However, further work is needed to extend these
results to other important grape and wine phenolic compounds,
such as anthocyanins and flavanols, as well as to the develop-
ment of similar methods for their assessment in other grape
varieties. In the future, we expect that the models developed
here, together with other mid-infrared spectral calibrations for
other important phenolic compounds (anthocyanins, copigmen-
tation, total phenols, etc.) in wine, currently under development
in our group, could be successfully transferred and implemented
as routine analyses in wineries.
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